Monitoring Groundwater and Surface Water and Source Water Program

Presented by Chuck Gorman

Environmental Assistance Conference October 2008

Ambient Surface Water Monitoring Program

Purpose of the Ambient Water Quality Monitoring Program

- The collection and analysis of data needed to make water quality management decisions:
 - Determine water quality status & identify waters not supporting classified uses (§305(b), §303(d), WWQA)
 - Determine long-term trends in concentrations of various constituents at individual sites (WWQA)
 - Collect data for Wasteload Allocation Models
 - Support specific NPDES permit limits
 - Evaluate effectiveness of SCDHEC programs

TIMDLs and the Clean Water Act

Water Quality Standards

Monitoring and Assessment

Publish 303(d) List of Impaired Waters

Determine Maximum Allowable Load
And required load reduction

Allocate Load

Point Source WLA

Control via NPDES
Permits

Nonpoint Source LA

Manage through grants, partnerships & voluntary programs

Main Ambient Monitoring Activities

- Physical & Chemical Monitoring
 - Water Column
 - Sediment
- Biological Community Monitoring
 - Macroinvertebrate
- Fish Tissue Monitoring

Components of the Ambient Monitoring Network Design

- Fixed Monitoring Network
 - Long-term trends
 - Consistent statewide coverage
- Cyclical Basin Monitoring
 - More spatially dense coverage
 - Watershed focus
- Probability-Based Monitoring
 - Statistical survey of statewide resources
 - Sample new locations

Most BOW programs are organized around a cyclical watershed approach

- Year One
 - Additional ambient monitoring
- Year Two
 - Assessment of WQ status (5 years of available data) & trends (up to 15 years)
 - Wasteload allocation modeling
- Year Three
 - Permit issuance
- Continuously Implementation

Cyclic Basin Sites

- More-or-less fixed, on a 5 year cycle
- Sampled monthly for 1 year when active

Watershed Program's Five-year Rotating Basin Schedule

	Savannah and Salkehatchie	Saluda and Edisto	Catawba and Santee	Pee Dee	Broad
2006	Assessment, Reporting	Monitoring	Remediation	Permitting*	Wasteload Allocation
2007	Wasteload Allocation	Assessment, Reporting	Monitoring	Remediation	Permitting*
2008	Permitting*	Wasteload Allocation	Assessment, Reporting	Monitoring	Remediation
2009	Remediation	Permitting*	Wasteload Allocation	Assessment, Reporting	Monitoring
2010	Monitoring	Remediation	Permitting*	Wasteload Allocation	Assessment, Reporting

Probability-Based Component

- Probability Sites
 - Sampled monthly for 1 year
- Make comprehensive statements about <u>statewide</u> WQ conditions (§305(b) use support)
 - Unbiased random sample (survey) of water resources
 - Represents entire resource
 - Known confidence of condition estimates
- Sample previously unsampled locations
 - Identify new §303(d) candidates

Resource Types Assessed Using Probability-Based Approach

- Streams (30 locations)
- Lakes (30 locations)
- Estuaries (30 locations)

Primary Uses to be Assessed with Probability Data

- Statewide
 - Aquatic Life Use Support
 - Recreational Use Support

Indicators

Core Parameters All Physical & Chemical Sites Monthly

Air & Water Temp Total Phosphorus

Dissolved Oxygen Kjeldahl Nitrogen

pH Nitrate

BOD₅ Ammonia

Fecal Coliform Alkalinity

Bacteria

Turbidity

Core Parameters -All Physical & Chemical Sites

Quarterly

Total Organic Carbon Manganese

Cadmium Mercury

Chromium Nickel

Copper Zinc

Iron <u>Annually</u>

Lead Hardness*

*Freshwater sites only

Core Parameters - Waterbody-Type Specific

Monthly

Salinity
Conductivity
Saltwater sites only

Chlorophyll a (May-Oct. all lakes and select estuarine)

Transparency (Secchi depth, all lakes)

Sediment Sampling

Annually

- Probability-based sites
 - All 30 streams and 30 lakes sampled and analyzed by SCDHEC
 - All estuarine sites collected by SCDNR and analyzed by NOAA – NOS
- 86 Fixed-location sites
- Select basin sites each year

Sediment Analyses at Selected Monitoring Sites

Annually – all sediment sampling sites

Total Phosphorus

Total Kjeldahl Nitrogen

Percent Volatile Solids

Metals

Pesticide & PCB Scan (25 compounds)

Additional Sediment Analyses at Selected Monitoring Sites

Annually

BNA Extractable Organics Scan

(56 compounds)

Volatile Organics Scan

(31 compounds)

Other Monitoring Elements

Ocean Water Monitoring

118 fixed sites coast wide sampled
 May 15 thru October 15

- 40 Sampled weekly
- 78 Sampled twice per month
- Used to issue swimming advisories at coastal beaches

Shellfish Sanitation Monitoring

- Statewide fixed sites
 - 467 sites sampled monthly

• Used to determine shellfish harvesting status

Macroinvertebrate Monitoring

- Basin sites
 - Approximately 80 per year
 - Includes reference sites within basin
- Probability-based stream sites
 - Wadeable stream sites, up to 30 per year
- Habitat & community assessment at all sites

Fish Tissue Monitoring

- Statewide fixed sites
 - 87 sites visited annually
- Basin sites
 - 14 42 additional sites annually, depending on basin

Fish Tissue Monitoring

- At least 2 species per site
 - May include additional species based on frequency of occurrence
- 5 Individuals per species
- Each individual treated as a separate sample
- Mercury on each sample (individual)
- 12 Samples per month for additional metals

You Need to Have a Little of Everything

- Probability based for big picture statements
- Fixed sites to examine long-term trends in individual parameters
- Capability for targeted monitoring for specific needs:
 - Emerging issues/special studies
 - Tracking of implementation of control strategies

Groundwater Water Monitoring

Quantity

 Wells and water level data mainly in coastal plain

Quality

- Ambient groundwater sampling program
- Site-specific contamination investigations

Groundwater Quantity

Percentage of Total Water Used From Groundwater

Groundwater Resources in the SC Coastal Plain

- Three aquifers in the Coastal Plain are the primary sources for groundwater use (Middendorf, Black Creek and the Floridan Aquifers)
- Working with SCDNR on Coastal Plain water level monitoring network for major aquifers.
- The Department expanding this network to have more than 70 locations with automatic data recorders.
- Support Capacity Use Program Area Designations and Permitting

Groundwater Quality

Ambient Groundwater Monitoring

The primary objective is to develop a baseline for ambient groundwater quality for South Carolina

- 1) To determine variations in regional groundwater quality.
- 2) To determine aquifer-specific variability in water quality.
- 3) To detect any significant changes in groundwater quality over time.

Generalized hydrogeologic cross-section from the Blue Ridge through the Lower Coastal Plain in South Carolina

Implementation Schedule

Major basins and their scheduled sampling date

2003: **Pee Dee** (28 wells): Piedmont Bedrock, Middendorf, Tertiary Sands, Black Creek,

Surficial Sands

2004: **Broad** (10 wells): Piedmont Bedrock and Saprolite

2005: Savannah and Salkehatchie (25 wells): Piedmont Bedrock, Saprolite, Middendorf,

Pee Dee/Black Creek, Tertiary Limestone

2006: Saluda and Edisto (18 wells): Piedmont Bedrock, Saprolite, Middendorf,

Black Mingo, Pee Dee, Tertiary Limestone, Surficial Sands

2007: Catawba and Santee (15 wells): Piedmont Bedrock, Middendorf, Black

Creek, Black Mingo

Groundwater Parameters

nitrate + nitrite

hardness

chloride

sulfate

TDS

рН

alkalinity

fluoride

TOC

specific conductivity

aluminum

beryllium

boron

cobalt

strontium

mercury

molybdenum

TKN

silica

zinc

calcium

- magnesium
- sodium
- potassium
- arsenic
- barium
- copper
- iron
- lead
- manganese
- selenium
- silver
- tin
- uranium
- cadmium
- chromium
- nickel
- antimony

lithium

Ambient Groundwater Quality Findings

Bedrock differs greatly within the Piedmont, so too does the composition of groundwater.

Coastal Plain downdip ion concentrations generally increase because water in the aquifer longer period of time

Source Water Protection

Protecting surface water and groundwater supplies

- Pollution prevention
- Identifying potential pollution sources
- Susceptibility analysis
- Contingency plans
- Community Involvement

Approaches for Promoting Drinking Water Source Protection

- For six or seven years, SCDHEC has encouraged system owners and operators to sign up for assistance in drinking water source protection planning on a system-by-system basis a "tough sell". Why?
 - ✓ Not a regulatory requirement 1996 amendments to the SDWA only encourage DWSPP
 - ✓ Not funded per se funding available but require extra effort
- SCDHEC now plans to promote:
 - Education and outreach to more grass-roots organizations
 - Regional approaches involving the COGs and planning commissions

Assistance Available from DHEC

SCDHEC staff is available to help you with:

- SCDHEC's GIS-based information on sources and PCS's including GPSing new sources and PCS's
- Local hydrogeological conditions and susceptibility analysis
- Process facilitation (planning, advertising and conducting meetings; research; interaction with regulatory programs)
- Hands-on plan preparation

Source Water – NPDES permits

